Histone deacetylase activity and brain-derived neurotrophic factor (BDNF) levels in a pharmacological model of mania.

نویسندگان

  • Laura Stertz
  • Gabriel Rodrigo Fries
  • Bianca Wollenhaupt de Aguiar
  • Bianca Pfaffenseller
  • Samira S Valvassori
  • Carolina Gubert
  • Camila L Ferreira
  • Morgana Moretti
  • Keila M Ceresér
  • Márcia Kauer-Sant'Anna
چکیده

OBJECTIVE In the present study, we aimed to examine the effects of repeated D-amphetamine (AMPH) exposure, a well-accepted animal model of acute mania in bipolar disorder (BD), and histone deacetylase (HDAC) inhibitors on locomotor behavior and HDAC activity in the prefrontal cortex (PFC) and peripheral blood mononuclear cells (PBMCs) of rats. Moreover, we aimed to assess brain-derived neurotrophic factor (BDNF) protein and mRNA levels in these samples. METHODS We treated adult male Wistar rats with 2 mg/kg AMPH or saline intraperitoneally for 14 days. Between the 8th and 14th days, rats also received 47.5 mg/kg lithium (Li), 200 mg/kg sodium valproate (VPT), 2 mg/kg sodium butyrate (SB), or saline. We evaluated locomotor activity in the open-field task and assessed HDAC activity in the PFC and PBMCs, and BDNF levels in the PFC and plasma. RESULTS AMPH significantly increased locomotor activity, which was reversed by all drugs. This hyperactivity was associated with increased HDAC activity in the PFC, which was partially reversed by Li, VPT, and SB. No differences were found in BDNF levels. CONCLUSION Repeated AMPH administration increases HDAC activity in the PFC without altering BDNF levels. The partial reversal of HDAC increase by Li, VPT, and SB may account for their ability to reverse AMPH-induced hyperactivity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induction of DARPP-32 by Brain-Derived Neurotrophic Factor in Striatal Neurons In Vitro Is Modified by Histone Deacetylase Inhibitors and Nab2

Neurotrophins and modifiers of chromatin acetylation and deacetylation participate in regulation of transcription during neuronal maturation and maintenance. The striatal medium spiny neuron is supported by cortically-derived brain derived neurotrophic factor and is the most vulnerable neuron in Huntington's disease, in which growth factor and histone deacetylase activity are both disrupted. We...

متن کامل

Assessment of oxidative stress parameters of brain-derived neurotrophic factor heterozygous mice in acute stress model

Objective(s): Exposing to stress may be associated with increased production of reactive oxygen species (ROS). Therefore, high level of oxidative stress may eventually give rise to accumulation of oxidative damage and development of numerous neurodegenerative diseases. It has been presented that brain-derived neurotrophic factor (BDNF) supports neurons against various neurodegenerative conditio...

متن کامل

A selective histone deacetylase-6 inhibitor improves BDNF trafficking in hippocampal neurons from Mecp2 knockout mice: implications for Rett syndrome

Rett syndrome (RTT) is a neurodevelopmental disorder caused by loss-of-function mutations in the transcriptional modulator methyl-CpG-binding protein 2 (MECP2). One of the most prominent gene targets of MeCP2 is brain-derived neurotrophic factor (Bdnf), a potent modulator of activity-dependent synaptic development, function and plasticity. Dysfunctional BDNF signaling has been demonstrated in s...

متن کامل

Effects of Valproic Acid, a Histone Deacetylase Inhibitor, on improvement of Locomotor Function in Rat Spinal Cord Injury Based on Epigenetic Science

Background: The primary phase of traumatic spinal cord injury (SCI) starts by a complex local inflammatory reaction such as secretion of pro-inflammatory cytokines from microglia and injured cells that substantially contribute to exacerbating pathogenic events in secondary phase. Valproic acid (VPA) is a histone deacetylase inhibitor. Acetylation of histones is critical to cellular inflammatory...

متن کامل

Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body β-hydroxybutyrate

Exercise induces beneficial responses in the brain, which is accompanied by an increase in BDNF, a trophic factor associated with cognitive improvement and the alleviation of depression and anxiety. However, the exact mechanisms whereby physical exercise produces an induction in brain Bdnf gene expression are not well understood. While pharmacological doses of HDAC inhibitors exert positive eff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Revista brasileira de psiquiatria

دوره 36 1  شماره 

صفحات  -

تاریخ انتشار 2014